
www.manaraa.com

1

Realization of Cooperative Agents Using an
Active Object-Oriented Database Management System

Andreas Geppert Markus Kradolfer Dimitrios Tombros

Institut für Informatik, Universität Zürich
Winterthurerstr. 190, CH-8057 Zürich, Switzerland

Email: {geppert|kradolf|tombros}@ifi.unizh.ch

Abstract: Cooperative, process-oriented environments (CPEs) are systems
whose behavior is defined in terms of process models. We show how CPEs are
realized through brokers, which are a special form of software agents1 used to
model participating entities in CPEs. A broker can represent a human partici-
pant, an existing software tool, or a part of the environment infrastructure. In
our approach, we implement brokers on top of the active object-oriented data-
base management system (ADBMS) SAMOS. Particularly, we use the facili-
ties of SAMOS for implementing communication/cooperation between and
control of brokers in CPEs. Our approach allows the construction of flexible,
extensible systems and the definition of the behavior of participating entities
local to brokers, avoiding the need for a centralized process engine.

Keywords: active database systems, software processes, workflows, agent control

1 Introduction and Motivation
Research in cooperative process-oriented environments is currently a very active topic.
Example types of CPEs are process-centered software development environments
(PCDEs) [9] and workflow management systems (WFMSs) [13, 23]. Regardless of
whether software processes can actually be treated as a special case of workflows, as
for example stated in [19], PCDEs and WFMSs have in common the notion of process.
Both support the computer-based modeling and execution of processes2, whereby a
process has the following characteristics:
• it is a possibly long-lasting activity,
• it consists of several sub-activities (steps or tasks),
• the execution of these sub-activities can be constrained (e.g., through execution or-

der, predicates on input or output data, or timing constraints), and
• it may involve both human beings and tools.
Multiple processes may have to be modeled and executed in the same environment,
and different CPEs may comprise different component systems (e.g., tools). Thus, it is
not feasible to define one concrete, fixed CPE. Instead, a CPE framework is required

1. We use the term “agent” in the sense of “processing entity” as it is used in the workflow liter-
ature [e.g., 6]. Brokers represent software agents [12]. Both terms should not be confused
with the concept as it is used in AI.

2. Subsequently, the term “process” subsumes “workflow” and “software process”.

In T. Sellis (ed.): Proc. 2nd Workshop on
Rules in Databases (RIDS), Athens,
Greece, September 1995. Lecture Notes in
Computer Science, Springer 1995.

www.manaraa.com

2

that can be customized to specific requirements. Such a framework has to satisfy the
following criteria:
• it should support modeling of the structure and execution semantics of processes,
• it should support the execution (enactment) of processes and thus:

- providecommunication between agents,
- coordinate the various agents (humans and — possibly external — tools) ac-

cording to the process model, and
- control the process state and progress. Depending on the process state (and the

desired process semantics), the CPE must react appropriately.
Most PCDEs or WFMSs support coordination and control through aprocess engine
(synonymously, task manager, activity manager). This component is central to the sys-
tem and guides processes, while most other components (agents) are more or less pas-
sive, i.e., they can act only as far as allowed or explicitly requested by the process
engine. The problem with such a process engine is its complexity, especially ifprocess
evolutionshould be supported, too. The complexity of a centralized process engine
stems from the fact that it has to keep all information on the possibly dynamically
changing capabilities of participating agents and on the state of process execution.
Moreover, process engines do hardly support an architectural view integrating servic-
es, software agents, and process logic.

We proposebrokers andservices as constructs for building CPEs. They provide a
service-oriented view of the environment and are used to model both, the static archi-
tecture and the behavioral aspects of CPEs (i.e., the process model). Brokers are able
to detect situations in which they have to react automatically, so that control and coor-
dination can be decentralized and distributed among the components of the CPE. Such
situations are often more complex than simple service requests. For instance, a broker
must be able to realize the fact that two alternative tasks have both failed, or that a spe-
cific deadline is only one week away, and so on. We show that such powerful brokers
can be implemented on top of an advanced ADBMS supporting composite events. The
advantage of using this implementation platform is that we can keep the description of
agent behavior and process control information local to the participating agents instead
of having a centralized process engine interpreting a process program responsible for
the tasks of agent coordination and cooperation.

The remainder of this paper is organized as follows. In the next section, we de-
scribe the broker/services model. In section 3 we show how brokers and services are
used for the realization of CPEs. Section 4 introduces the ADBMS SAMOS and shows
how it is used to implement brokers. Section 5 presents an example, section 6 briefly
surveys related work, and section 7 concludes the paper.

2 The Broker/Services Model
In this section, we introduce thebroker/services model we use to describe the structure
of a system, its behavior, and architectural constraints. By “system” we mean an envi-
ronment that consists of several agents (applications, environment infrastructure com-
ponents, human users). In order to obtain an integrated architecture, these agents are
represented bybrokers. Due to reasons which become apparent later, the ADBMS SA-
MOS [10, 16] is always part of the environment infrastructure. We further assume that

www.manaraa.com

3

agents offerservices to their potential clients, and that the system behavior is defined
by aprocess model determining under which circumstances a specific service can or
must be provided.

Our model uses an object-oriented approach to system construction, extended with
the possibility to define reactive behavior of the participating objects3. In addition to
the concepts introduced above, we useresponsibilities to relate services with the bro-
ker(s) responsible for their provision. A CPE-architecture is then defined as a collec-
tion of brokers operating in various roles, responsible for providing services and able
to monitor complex events and react according to predefined ways. The services pro-
vided by brokers can refer to the manipulation of data or to the control and coordina-
tion of other brokers. Below, we describe these concepts in more detail. Fig. 1 contains
a textual specification of the key concepts of the model. Note that the process model
will be encoded within broker definitions; an example thereof is presented in section 5.

2.1 Services
Services model the functionality of system components. The totality of services pro-
vided by components represents the functionality of the entire system. The use of ser-
vices allows a view of the environment abstracting from concrete implementations. A
specific service is provided by one or more brokers (see below) and can be requested
by various client brokers. It is specified by a service signature consisting of the service
name, its parameters, the possible replies and exceptions its request may cause.

2.2 Brokers
Brokers represent agents, responsible for the provision of system services. In order to
model varying degrees of integration in the CPE, we distinguish between three kinds
of brokers:internal, external, andinterface brokers. Internal and interface brokers are
described by their state, the services they areresponsible for providing, and their reac-
tion to predefined events. External brokers represent agents whose “implementation”

3. The term “reactive behavior” describes the capability of objects to autonomously execute
various actions in response to the occurrence of predefined situations (not just method calls).

BROKER broker_name: broker_kind SERVICE service_name
STATE {state_name: type} PARAMETERS {param_name: type}
RULES {RULE rule_name REPLIES:

ON event {reply_name, {para_name: type}}
IF condition EXCEPTIONS {exception_name}
DO action
[PRECEDENCE rule_name_list]}

ROLES
STATE {state_name: type}
RULES { //as above }

RESPONSIBILITY service_name: broker_name

Figure 1. Key Concepts of the Broker/Services Model .

www.manaraa.com

4

is not known (e.g., humans). The state of a broker consists of typed instance variables
which can be eithersub-brokers or passive objects. Passive objects can be used to rep-
resent data manipulated by a broker, thus providing a mapping to a common data mod-
el for all participating agents. Brokers which have sub-brokers are calledcomposite.
Sub-brokers of internal and interface brokers can only be internal or interface brokers
themselves.

Internal brokers represent proprietary CPE components. Interface brokers imple-
ment the behavior of proprietary CPE components interacting with human beings and
external tools. A typical example is a session manager representing the human user in-
terface to the system. External brokers are blackboxes for which the internal state and
service implementations do not have to (but can) be defined. They model the behavior
of human users and external tools, and can request services from other external brokers
as well as from interface brokers.

Brokers and their sub-brokers form a hierarchy with a predefined visibility of ser-
vice requests. This allows the definition of different behavior according to the organi-
zational context of a request.

2.3 Roles
Roles specify the responsibilities of brokers in various situational and organizational
contexts. The concept of roles is used to model for example the fact that the same
agent (e.g. a person), may have different responsibilities in different organizational
sub-groups. Roles are used in a slightly different sense to the conventional in workflow
modeling, where they define a grouping of capabilities [6] usually associated with a
functional objective in an organization. An example of this definition of a role is to “be
a manager” and thus every person who is a manager plays this role. In our case howev-
er, roles denote the responsibilities a concrete broker (human or non-human) has in a
(sub)organization at some point during its lifetime. Thus roles can only be defined as
part of a broker definition. Each role specification consists of a set of event-condition-
action-rules (ECA-rules) and state variables. There may however be state variables
and ECA-rules common to all roles of a broker (i.e. role-independent).

2.4 ECA-Rules
ECA-rules define the reaction of brokers (within the context of a role) to specified ex-
ternal events of various types. They have a unique name and consist of an event clause,
a condition clause, and an action part. It is possible that more than one rule reacts to
the same event within one broker (role).

The events to which brokers react can occur for example due to a sequence of bro-
ker actions within a process, or when specific points in time are reached. In order to
describe events occurring during the operation of a CPE, we use variousevent types.
Our model uses the followingprimitive event types:
• Service provision events are explicitly raised by brokers through special (parame-

trized) operations. These include the events generated by service requests and their
subsequent replies. The events have parameters corresponding to those needed by
the specific operations.

www.manaraa.com

5

• Time events occur when a particular point in time is reached. They are specified ei-
ther absolutely (by giving a clock-time), relatively to another event, or as periodic
events.

• Value events are related to the modification of an object value. This allows among
others the monitoring of (database) object states. Such events are defined for update
operations on object attributes and take place before or after the operation that up-
dates the value of the object is performed.

• Method events are bound to the execution point of a specific passive object method.
Their occurrence point is specified as being just before or immediately after (i.e. di-
rectly before the method returns to its caller) method execution.

Note that the last two event types can only refer to passive (database) objects.
Time intervals can be defined in order to limit the period in which an event occur-

rence is of interest and should be monitored. Suchmonitoring intervals specify a —
possibly implicitly defined — time interval in which an event has to occur in order to
be considered as relevant. The monitoring intervals are a part of the event definition.

In order to adequately model reactive broker behavior in more complex situations
(e.g. within the context of process control, see below) we introducecomposite events.
Composite events are defined by combining component events — possibly recursively
— through the following constructors:
• conjunction: occurs when both component events have occurred,
• disjunction: occurs when one of the two components has occurred,
• sequence: occurs when the component events have occurred in the specified order,
• negationof an event: occurs when the component event has not occurred within a

specified time interval,
• times: occurs when the component event has occurred a specified number of times

within a certain time interval,
• closure: occurs when the component event has occurred at least once within a spec-

ified time interval, but is signalled only once regardless how often the component
event actually occurred.

While monitoring intervals are mandatory in the last three cases, they are optional in
the first three ones.

Conditions are expressed over the state of brokers and guard the execution of the
action part. In the action part of the broker role ECA-rules, various operations (e.g.
service requests and replies), or calls to methods of broker-specific passive compo-
nents may be performed in order to implement services. Due to space economy, these
are only exemplified in section 5.

A partial ordering of rule execution can be defined by using a precedence clause. A
precedence order has to be defined in case the action part of a rule affects the condition
part of another one, therefore influencing rule execution semantics.

3 Modeling Process-Oriented Environments With Brokers

3.1 Requirements
A CPE framework should meet the following requirements:

www.manaraa.com

6

• it should be customizable in anabstract anddeclarative way, to the functional and
operational requirements of specific organizations and projects using the developed
CPE,

• it should support different, butintegrated views of the functionality it offers,
• it should supportcommunication between participating agents of the various sorts,
• it should supportcoordination between participating agents of the various sorts,
• it should be able tocontrol participating agents wherever possible and necessary.
Naturally, the process-oriented view describing tasks, their structure, and related con-
straints is important in a CPE. The process-oriented view describes the “process logic”
since it defines the “how” of a process model. We additionally require that a CPE pro-
vides activity-oriented and agent-oriented views as well. The first one focuses on the
activities performed by the CPE agents and the services used for the realization of the
CPE functionality, while the latter one additionally supports the assignment of tasks to
concrete agents.

An integrated, abstract view is thus needed. Generally, it can be the case that CPE
components are implemented on different platforms using even different data stores. It
must still be possible to have a level providing a uniform view of the entire CPE, i.e.,
heterogeneous component systems should be integrated into a coherent environment.
Given that components may be heterogeneous but still have to interoperate, communi-
cation cannot simply be realized through message passing. Appropriate mechanisms
for communication between agents have to be provided at a higher level of abstraction.

The same holds for coordination: it will seldom be the case that agents are com-
pletely independent from each other. Usually some of them will have to cooperate to
various degrees in order to fulfill the overall task. In other words, the CPE should pro-
vide a mechanism that allows agents to be coordinated according to the process model.

Ultimately, agents must be controlled during process execution. The CPE must pro-
vide a mechanism for the enforcement of required constraints, the prevention of incon-
sistent process states and transitions, and the automatic reaction to such situations.

The first steps in customizing a CPE are the following:
• identify the processes to be modeled,
• determine the required tasks,
• determine agents that are responsible for specific tasks in one of the processes.
Clearly, a methodical approach for these steps is required. Nevertheless, we assume
that this analysis has already been performed, and subsequently describe how brokers
are used for the customization of a CPE.

3.2 Integrated Software Architecture and Different Views
Given the three steps mentioned above, the next step consists of determining the ap-
propriate (static) software architecture. By software architecture, we mean
• a collection of brokers representing agents or internal components,
• a set of services, where each service either represents a task of a process or an inter-

nal service,
• a set of responsibilities assigning services to brokers.
Any agent in a CPE — be it a proprietary component, an external tool, or a human —
is represented by a broker. On its top level, the CPE is integrated since all brokers in-

www.manaraa.com

7

teract via service requests and replies. Depending on the concrete agent, we typically
know more or less about how the corresponding broker implements its services. For a
proprietary component, we will know all implementation details. For external tools,
we know their interface and the (operational) semantics of their operations. For hu-
mans, we know their responsibilities but do not (need to) have precise knowledge of
how they do their work. This variety is captured through the specialization of brokers
into the three subclasses of brokers mentioned above (internal, external, and interface
brokers).

As mentioned before internal brokers represent proprietary components and inter-
face brokers are used to represent external tools by providing a tool wrapping mecha-
nism. The service implementation is actually a shell mapping service requests to the
interface of the tool, collecting the tool output, and eventually returning the results.
External brokers represent blackbox agents such as humans for which only service sig-
natures are known.

3.3 Modeling Process Control
Control means enforcing constraints, including task dependencies and constraints on
data items accessed and manipulated by some task of the process. The following kinds
of task dependencies can be distinguished [21]:
• execution dependencies,
• data or value dependencies, and
• temporal dependencies.

Execution dependencies are defined through execution states of tasks. An execution
dependency can for example state that upon termination of a task, another one has to
be started. Data or value dependencies of tasks are expressed through the output values
of other tasks or values which are accessed by arbitrary systems. A data or value de-
pendency can for example state that task A has to be executed if task B terminates with
an output value below a certain threshold. Temporal dependencies define arbitrary tim-
ing constraints on tasks like “task B has to be started within 6 weeks after the termina-
tion of task A”.

In the broker/services model, we can model the above dependencies by using ECA-
rules. We can additionally model their combinations by using logical operators like
conjunction, disjunction and negation on events. For example the execution dependen-
cies “and-join” (e.g. only after a set of tasks has terminated, another (set of) task(s)
must be started) and “or-join” (e.g. only when a certain number out of multiple (paral-
lel) tasks has been terminated (successfully), another one can or must be started) de-
scribed in [23] can be defined.

For example, assume that an execution dependency refers to previously executed
tasks Ti (1 ≤ i ≤ n) whose termination is indicated through raising reply events includ-
ing an optional list of parameters. Let the dependency require task T to be executed.
Then the mapping of dependencies to composite events is as follows:
• an and-join is mapped to an event conjunction (∧)
• an or-join is mapped to an event disjunction (∨),
• deadline dependencies are mapped to time events or events constrained by moni-

toring intervals.

www.manaraa.com

8

Furthermore value or data dependencies are mapped to a parametrized event and a pa-
rameter test in a condition. Examples of these mappings are presented in Table 1.

Current PCDEs or WFMSs typically implement control in some kind of process en-
gine, which then keeps track of the process state. Some also use ADBMSs for control
[e.g., 6, 17], which however are typically not able to detect complex situations (and
therefore the process engine is nevertheless needed).

In our model, control can be completely performed by brokers on top of the
ADBMS. Thus, control information is distributed among brokers and less centralized
than in current systems. In addition, localized control leads to a more rigorous client/
server approach. Apparently, some of the process engine’s task are pushed into the
ADBMS, which we see as an advantage in terms of using standard base components
wherever possible and striving for a “minimality of concepts”.

4 Implementation of Brokers
In this section, we introduce SAMOS and then show how it is used for the implemen-
tation of brokers.

4.1 SAMOS, an Active Object-Oriented DBMS
In addition to passive data modeling facilities, SAMOS supports the specification (and
implementation) of reactive behavior by means of ECA-rules (henceforth called SA-
MOS ECA-rules).

Events can be primitive or composite. Primitive events can in turn be of one of the
following kinds:
• message sending event: occurs at the beginning or the end of a method execution,
• value event: occurs before or after the value of an object is modified,
• transaction event: occurs before or after a transaction operation (begin, commit, or

abort transaction),
• time event: occurs at a specific point in time (absolute time event), periodically af-

ter a specified interval (periodical time events), or as soon as a specified time inter-
val following another event occurrence has elapsed (relative time events), and

• abstract event: “occurs” when explicitly signalled by a user or application.

Dependency
ECA-Rule defined for broker

Event Condition Action

data or value reply of T1, including
parameter p

if p request T

execution (sequence) reply of Ti - request T

execution (and-join) ∧i reply of Ti - request T

execution (or-join) ∨i reply of Ti - request T

temporal (deadline) ! (∧i reply of Ti) within
interval

- notification etc.

Table 1. Examples of ECA-Rules for Modeling Task Dependencies

www.manaraa.com

9

SAMOS allows the definition and detection of composite events specified with the fol-
lowing event constructors: conjunction, disjunction, negation, sequence, closure, and
times. For a definition of the semantics of these constructors, see [11].

Upon event detection, the condition is checked. If it holds, the action is executed,
otherwise the execution of the rule terminates. Both conditions and actions must be
given in the data manipulation language (DML) of the underlying ooDBMS Object-
Store. For details of rule execution, which are less relevant in this context, see [16].

4.2 Implementation of Brokers Using SAMOS
For the implementation of brokers we strive to map the concepts present in the brokers
to the functionality provided by SAMOS. We avoid however the extension of SAMOS
functionality in order to abstract from a specific implementation platform. The con-
cepts of interest in the mapping process are brokers and their responsibilities, passive
broker components, services, replies and ECA-rules describing the reactive broker be-
havior. The underlying ADBMS (in this case SAMOS) is used to manage and detect
events relevant to the brokers, to manage the rules describing broker behavior and to
implement coordination and communication mechanisms for individual brokers.

Similar to SAMOS’ approach to represent events and rules as objects [11, 16], we
model brokers as instances of a classbroker (Figure 2). Each broker contains a non-
empty set ofrole objects. Among the methods of therole class are predefined oper-
ations with which brokers in a role can request services from other brokers (at the
same level or subbrokers) or reply to incoming service requests. References to the
rules describing the broker behavior in a role are also stored in order for example to lo-
cate the relevant rules when this behavior is modified.

Passive broker components can be of different types and are instances of children
of a genericcomponent class. They are referenced in an attribute of each broker in-
stance (Set<Comp*>) and are declared such that brokers can call their methods.

During the mapping process ECA-rules defining the reaction of a brokerb in a role
r to a service requests are transformed to SAMOS ECA-rules as described below.
Suppose we have two brokersb1 andb2 with b1 being responsible to provides1

Figure 2. Brokers and components

Broker Comp

Set<Comp *>

Comp_X

... method_x1();
... method_x2();

Set<Broker *>

name name

SAMOS_Rule

name
condition
action

Role

void request();
void reply();
...
Set<SAMOS_Rule *>

Set<Role *>

name

www.manaraa.com

10

when in the roler1. Suppose further that in order to provides1, b1 requests the ser-
vices2 provided byb2 (in roler5) by sending a messagem1 to its componentc. This
situation is defined as follows:

b1.r1 and b2.r5
RULE rule1 RULE rule2
ON s1 ON s2
DO request(s2) DO c->m1()

Based on the broker ECA-rules SAMOS ECA-rules are generated taking into account
the implicit responsibilities of each broker as expressed in the above rules.
We thus have the following SAMOS statements:

DEFINE EVENT s1 DEFINE EVENT s2
DEFINE RULE rule1 and DEFINE RULE rule2
ON s1 ON s2
DO b1->r1.request(s2) DO b2->c->m1()

In the action part of the SAMOS ECA-rule we can have either calls to predefined bro-
ker (role) operations, or calls to methods of the passive components of the broker for
which the rule is generated. Responsibilities are used when transforming broker rules
to SAMOS ECA-rules in order to associate services to the roles or components that
provide them. Service requests are modeled as SAMOS abstract events and are sig-
nalled by the request operations performed by brokers which send theraise_event
message to the rule manager with the service name as parameter.

Relationships between brokers (e.g. precedence in responding to a service request,
or “exactly one” agent execution semantics) are also taken into account when trans-
forming their rules into SAMOS ECA-rules. Such transformations may introduce pri-
orities in rule execution or mutually exclusively executing rules.

5 An Example
In this section, we present an example workflow. An example from the software pro-
cess domain can be found in [22]. Consider the processing of a health insurance claim
(HIC) as shown in the activity diagram in Figure 3. Once the HIC is received, a human
agent creates an electronic dossier containing the diagnosis, the treatments, and costs
(from the HIC), and if an insurance policy exists, a reference to the entry in the insur-
ance company database (activityA1). An automatic agent controls whether there is a
valid insurance policy for this HIC (A2). Activity A3 controls whether the total cost is
less than a certain amount (e.g. 300 Francs). In that case the HIC is directly forwarded
to an automatic agent which prepares a check, prints it and notifies a clerk (A4). Other-
wise, further controls are performed in parallel by automatic and human agents. One is
whether some of the treatments are contained in a blacklist in which case their cover-
age will be denied (A5). Activity A6 performed by an external rule-based system con-
trols whether the (combined) treatment actually suits the diagnosis, andA7 checks for
compatibility of the diagnosis and treatment, with respect to the patient’s history. If
one of these controls fails, an entry is made in the customer history, a notification of
the rejection is printed (A8) and a clerk is informed. Otherwise, a payment check is
printed and a clerk is again notified. Ultimately, a law specifies that the insurance com-

www.manaraa.com

11

pany must react (either positively or negatively) at the latest after six weeks. For our
example we assume that if no rejection decision has been made within six weeks from
the dossier creation the claim is automatically accepted. Note that the activity diagram
does not show the transitions in case the HIC is accepted due to having reached the
time limit as shown in ruleaccept2 below.

Parts of the broker definitions responsible for these activities are shown below in
order to show a possible implementation of activity sequencing constraints (see Table
1) of the workflow described. We assume the following (incomplete) type definition
for HIC dossiers:

TYPE HIC_DOSSIER
amount : AMOUNT
creation_date : DATE
state : HIC_STATE {Rejected, Accepted, InProcess}
insurance_policy : INSURANCE_POLICY_REF
...

A sequence is defined in the following two rules describing the reaction of the broker
responsible for the activityA3 (Broker_C) to the successful completion ofA2 by
Broker_B. Note that depending on the outcome ofA3 either activityA4 will take
place or other checks will be performed in activitiesA5, A6, andA7 (1-in-N split):

BROKER Policy_Checker: INTERNAL
// reaction to the request to check the claim validity
RULE check1
ON check_hic(hic_dossier: HIC_DOSSIER)
IF NOT (hic_dossier.insurance_policy == NULL)
DO reply(policy_valid, check_hic, hic_dossier)
...
BROKER Amount_Checker: INTERNAL
// reaction to a reply that the HIC refers to a valid policy
RULE valid1
ON policy_valid(hic_dossier: HIC_DOSSIER)
IF hic_dossier.amount =< 300
DO hic_dossier.state = Accepted

Figure 3. Sample Workflow

A1 A2 A3 A4

A7

A6

A5

A8

A human activity

A computer activity

AND-join

OR-join

∧ AND-split

1inN-split⊕

∧

∨

⊕ ⊕

∧

∧

∨

∨

⊕

⊕

⊕

www.manaraa.com

12

reply(amount_small, check_hic, hic_dossier)
// reaction to a reply that the HIC refers to a valid policy
RULE valid2
ON policy_valid(hic_dossier: HIC_DOSSIER)
IF hic_dossier.amount > 300
DO reply(amount_large, check_hic, hic_dossier)
...

An AND-join is exemplified in the ruleaccept1 of an internal broker (e.g.
Broker_D) when the checks made in activitiesA5, A6, andA7 are all positive the
claim can be accepted:

// reaction to positive results from various checks
RULE accept1
ON not_blacklisted(hic_dossier_1: HIC_DOSSIER) AND compatible_treatment

(hic_dossier_2: HIC_DOSSIER) AND compatible_history(hic_dossier_3:
HIC_DOSSIER)

IF hic_dossier_1 == hic_dossier_2 == hic_dossier_3
DO hic_dossier.state = Accepted

reply(hic_accept, check_hic,hic_dossier_1)

An OR-join is exemplified in the ruleprint1 of a printer interface broker which de-
scribes the activities performed upon acceptance of the claim:

// reaction to acceptance of the claim
RULE print1
ON amount_small(hic_dossier: HIC_DOSSIER) OR

hic_accepted(hic_dossier: HIC_DOSSIER)
DO printer->printCheck(hic_dossier) // call method of printer component

request(notify_clerk, print_location)

A deadline is defined with the ruleaccept2 of theBroker_D stating that if no rejec-
tion of the HIC has been made within 6 weeks the claim will be accepted:

// acceptance of claim if deadline has been reached and it has not been rejected
RULE accept2
ON NOT(reject_hic(hic_dossier: HIC_DOSSIER, reason: REASON))

IN [hic_dossier.creationdate + 6 weeks]
IF hic_dossier.state == InProcess// set in A1 and since not changed
DO hic_dossier.state = Accepted

reply(hic_accept, check_hic, hic_dossier)

Service Name Parameters Replies

check_hic hic_dossier:
HIC_DOSSIER

policy_valid, reject_hic, amount_large,
amount_small, hic_accept, not_blacklisted,
compatible_treatment, compatible_history

notify_clerk print_location:
PRINTER_NAME

-

Table 2. Services and replies used in the example workflow

www.manaraa.com

13

6 Related Work
Both WFMSs and PCDEs use some kind of “process engine” for process enactment
[e.g., 6, 17]. It has been investigated for both kinds of systems how active mechanisms
can be used. However, to date only ADBMSs that support primitive events have been
used [e.g., 6, 7, 17], and thus control with complex constraints as described above is
not possible within the ADBMS. For instance, the SPADE [1] environment is imple-
mented on top of the ADBMS NAOS [7] and still uses external to the ADBMS process
interpreters for process enactment. Adele/Tempo [3] is based on a DBMS providing an
extended ER-Model. Interpreted temporal event-condition action rules are attached to
software objects to define development policies and express integrity constraints. The
supported event types are database operations and the conditions (defined as part of the
events) are formulas over the past and present state of the system or database.

The work presented in [8] is similar to our approach in that it uses ECA-rules to
control and organize long-lasting workflows. However, in the broker/services model
introduced here, additional abstractions are introduced which —as we feel— serve the
purpose of designing CPEs better than “pure” ADBMSs. Particularly, the broker/ser-
vices model supports agent- or service-oriented views, which are not apparent if CPE-
design and imlementation actually means programming an active database system.

Condition-action rules have also been used in PCDEs, e.g., in ALMA [18] or Mar-
vel [2]. These approaches, however, are potentially less efficient (since events are not
supported), and complex constraints on processes can be formulated, checked, and en-
forced in a less elegant way than is possible with a system supporting complex con-
straints attached directly to agents.

The integration of existing and possibly heterogeneous component systems is also a
goal of the REACH project [4]. In contrast to our intended application domain,
REACH focuses on real-time applications (where deadlines are much harder and more
critical than in our types of processes). We consider the work done in REACH as com-
plementary to ours since REACH so far has mainly considered the transaction man-
agement aspect (which is still open here).

7 Conclusion
We have described the broker model which we use for the realization of CPEs, namely
control, communication, and coordination of CPE-components. In comparison to cur-
rent approaches using process engines, the broker-based approach is more flexible and
allows a more natural view of CPEs, since the relevant structures and behavior can be
specified local to brokers. Thus, the contribution of this work is twofold:
• by using brokers, tasks related to control, communication, and coordination can be

distributed among the brokers, and
• brokers can be easily implemented using an ADBMS such as SAMOS.
The broker model as presented here is currently under implementation on top of SA-
MOS. Two aspects of CPEs not investigated here, are subject to future work:
• a completeprogramming environment for customizing CPEs, and
• autonomy of component systems andtransaction management (TM).

www.manaraa.com

14

First, we have described the use of brokers for the customization of CPEs. Clearly, a
more abstract and declarative model (e.g., a graphical design tool) would be helpful.
Most likely, we will not develop yet another language, but evaluate existing ones for
our purposes. Functionalities such as planning, measurement, and process evolution
shall be covered by such a programming environment as well. Additionally, this envi-
ronment shall support process state representation and visualization.

Second, since we use brokers as wrappers for external components, interoperability
and autonomy have to be addressed in the context of a suitable wrapper definition. In
combination with TM, however, they pose a much harder problem. With respect to
TM, we want to achieve the following:
• processes should be definable as long-lived transactions (e.g., comparable to DOM

transactions [5]),
• TM on the level of CPEs should be able to integrate the local TM mechanisms of

the component systems, wherever present.
TM in interoperable systems is still an open problem. We plan to investigate whether it
can beneficially be implemented local to brokers (in case the wrapped system does not
provide full-fledged TM) using our construction approach in terms of strategies and
techniques [15], and the transformational approach for transaction structures [14]. We
will also investigate whether the concept of strategy can be extended so that it can
guide CPE-implementors during the wrapping and integration process in these cases
where component systems already have a local transaction manager.

8 Acknowledgments
We gratefully acknowledge the comments and ideas contributed by Klaus Dittrich. We
thank Stefan Scherrer for illuminating explanations of the health insurance business.

We also thank the Swiss Federal Office for Education and Science for funding our
part in the ACTNET HCM-network (BBW Nr. 93.0313). The work of M. Kradolfer is
funded by the Swiss National Fund in the context of the TRAMs project (Nr. 21-
40440.94).

9 References
1. S. Bandinelli, L Fuggetta, C. Ghezzi, L. Lavazza: SPADE: An Environment for

Software Process Analysis, Design and Enactment. In [9].
2. N.S. Barghouti: Supporting Cooperation in the MARVEL Process-Centered SDE.

ACM Software Engineering Notes, 17:5, December 1992.
3. N. Belkhatir, W.L. Melo: Evolving Software Processes by Tailoring the Behavior

of Software Objects.Proc. IEEE Intl. Conf. on Software Maintenance, Victoria,
September 1994.

4. H. Branding, A. Buchmann, T. Kudrass, J. Zimmermann: Rules in an Open
System: The REACH Rule System. In [20].

5. A. Buchmann, M.T. Oezsu, M. Hornick, D. Georgakopoulos, F.A. Manola: A
Transaction Model For Active Distributed Object Systems. In A.K. Elmagarmid
(ed): Database Transaction Models For Advanced Applications. Morgan
Kaufmann Publishers, 1992.

www.manaraa.com

15

6. C. Bussler, S. Jablonski: Implementing Agent Coordination for Workflow
Management Systems Using Active Database Systems.Proc. 4th Intl. RIDE: ADS
Wokshop, Houston, Texas, February 1994.

7. C. Collet, T. Coupaye, T. Svensen: NAOS: Efficient and Modular Reactive
Capabilities in an Object-Oriented Database System.Proc. 20th Intl. VLDB Conf.,
Santiago, Chile, September 1994.

8. U. Dayal, M. Hsu, R. Ladin: Organizing Long-Running Activities with Triggers
and Transactions. Proc. ACM-SIGMOD Intl. Conf. on Management of Data,
Atlantic City, May 1990.

9. A. Finkelstein, J. Kramer, B. Nuseibeh (eds):Software Process Modeling and
Technology. Research Studies Press Limited, 1994.

10. S. Gatziu, A. Geppert, K.R. Dittrich: Integrating Active Concepts into an Object-
Oriented Database System.Proc. 3rd Intl. DBPL Workshop, Nafplion, Greece,
August 1991.

11. S. Gatziu, K.R. Dittrich: Events in an Active Object-Oriented Database System.
In [20].

12. M.R. Genesereth, S.P. Ketchpel: Software Agents.Communications of the ACM,
37:7, July 1994.

13. D. Georgakopoulos, M. Hornick, A. Sheth:An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure.
Distributed and Parallel Databases, 3:2, April 1995.

14. A. Geppert, K.R. Dittrich: Rule-Based Implementation of Transaction Model
Specifications. In [20].

15. A. Geppert, K.R. Dittrich: Strategies and Techniques: Reusable Artifacts for the
Construction of Database Management Systems.Proc. 7th Intl. Conf. on Advanced
Information Systems Engineering, Jyväskylä, Finland, June 1995.

16. A. Geppert, S. Gatziu, K.R. Dittrich: Architecture and Implementation of an
Active Object-Oriented Database Management System: the Layered Approach.
TR, Computer Science Dept., University of Zurich, 1995.

17. H. Jasper: Active Databases for Active Repositories.Proc. 10th Intl. Conf. on
Data Engineering, Houston, Texas, February 1994.

18. A. van Lamswerde: Active Software Objects in a Knowledge-Based Lifecycle
Support Environment. In D. Mandrioli, B. Meyer (eds):Advances in Object-
Oriented Software Engineering. Prentice Hall, 1992.

19. F. Leymann, W. Altenhuber: Managing Business Processes as an Information
Resource.IBM Systems Journal, 33:2, 1994.

20. W. Paton, H.W. Williams (eds): Rules in Database Systems. Workshops in
Computing, Springer-Verlag, 1994.

21. M. Rusinkiewicz, A. Sheth: Specification and Execution of Transactional
Workflows. W. Kim (ed):Modern Database Systems. Addison Wesley, 1995.

22. D. Tombros, A. Geppert, K.R. Dittrich: SEAMAN: Implementing Process-
Centered Software Development Environments on Top of an Active Database
Management System. TR, Computer Science Dept., University of Zurich, 1995.

23. Glossary. A Workflow Management Coalition Specification. The Workflow
Management Coalition, Bruxelles, Belgium, November 1994.

